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We present an improved analytical expression for the x-ray dynamic structure factor from a dense 
plasma which includes the effects of weakly bound electrons. This result can be applied to describe 
scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that 
can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately 
coupled systems. We use our theory to interpret x-ray scattering experiments from solid density 
carbon plasma and to extract accurate measurements of electron temperature, electron density and 
charge state. We use our experimental results to validate various equation-of-state models for carbon 
plasmas. 

I. INTRODUCTION 

X-ray scattering of solid density plasmas has been re- 
cently proven a successful technique for the character- 
ization of low-Z warm and dense states of matter [l- 
31. In particular, it was shown that by extending the 
theory of spectrally resolved Thomson scattering in the 
hard x-ray regime, accurate measurements of the elec- 
tron temperature, electron density and ionization state 
can be obtained. In this respect, comparison of the ex- 
perimental results with equation of state (EOS) models 
has started revealing important insights on the micro- 
scopic electronic state of solid density beryllium plasmas 
[2]. In this paper, we present a generalization of the tech- 
nique to higher Z materials, thus allowing the study of 
basic plasma parameters and transport properties of a 
vast range of plasma regimes, as the ones created in iner- 
tial confinement fusion (ICF) experiments [4] and found 
in the interior of stars and planets. 

In the case of low-Z materials, the x-ray dynamic form 
factor, which is the fundamental quantity describing the 
scattering cross section, is considerably simplified since 
it contains only two major contributions that arise from 
scattering from free electrons and tightly bound elec- 
trons. The first term is usually described within the 
random phase approximation (RPA) [5, 61 and it refers 
to photon scattering from density fluctuations of the free 
electrons in the plasma. During the process, energy is ex- 
changed from the photons to the electrons, and the scat- 
tered photons are downshifted in energy by the Compton 
effect. Coherent scattering from tightly bound electrons, 
instead, is well separated in energy from the free electron 
term and it arises from photons that elastically scatter 
electrons, as energy transfer is not kinematically allowed 
in their bound states. The x-ray scattering cross section 
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can be thus obtained for solid density matter, accounting 
for both ideal and quantum degenerate plasmas 111. The 
transition from ideal to degenerate states often encom- 
passes weakly or strongly coupled states [7] which may 
exhibit a modified response in the electron density fluc- 
tuation dynamics. A discussion on such conditions and 
their effect on the x-ray scattering form factor has been 
presented by Gregori et al. [8]. 

X-ray scattering from moderate to high-Z materials 
add another term to the total form factor: scattering 
from weakly bound electrons. Since, for those electrons 
Compton scattering is kinematically permitted, the inci- 
dent x-ray photons have a finite probability to transfer a 
portion of their energy to the electrons, resulting in the 
appearance of a secondary feature in the spectrum of the 
scattered radiation that overlaps to the free electron one. 
Thus, the interplay of the scattering from all of these 
terms: free, tightly bound and weakly bound electrons, 
provides a unique method for a full characterization of 
the electronic state of the dense plasma. The number of 
valence (or delocalized) electrons can be directly inferred 
from the experimental spectra, as well as electron tem- 
perature and density, providing important EOS model 
validation. We will further discuss this point using car- 
bon as an example. By extracting carbon EOS data from 
experimental x-ray scattering spectra from solid density 
carbon plasmas, we will directly compare our results with 
various ionization balance models. 

11. THEORY 

Following the discussion in Gregori et al. [l], we de- 
scribe the scattering from a uniform plasma containing 
N ions per unit volume. If Z A  is the nuclear charge of 
the ion, the total number of electrons per unit volume 
in the system, including free and bound ones, is Z A N .  
Let us now assume we probe such a system with x-rays 
of frequency wg such that b o  >> E I ,  with EI the ion- 
ization energy of any bound electron, i e . ,  the incident 
frequency must be large compared to any natural absorp- 
tion frequency of the scattering atom, which allows us to 
neglect photoabsorption. During the scattering process, 
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the incident photon transfers, on average, momentum hk 
and energy Rw = h2k2/2me = Rwo - hwl to the electron, 
where w1 is the frequency of the scattered radiation, and 
in the non-relativistic limit (hw << Awo) 

4w 
k = Ikl = - sin (8/2),  

A0 

with A0 the probe wavelength and 8 the scattering an- 
gle. We denote with 2, and 2, the number of kine- 
matically free and core electrons, respectively. Clearly, 
ZA = Z f  + 2,. Here 2, includes both tightly bound and 
weakly bound electrons, as there is not a net distinction 
between them, and for any given bound electron in the 
outermost shells there is a finite probability of either elas- 
tic or inelastic scattering. Since 2, represents electrons 
which are not bound to any single atom, we will also refer 
to it as the number of delocalized, or valence, electrons. 
Following the approach of Chihara [9, 101 the scattering 
cross section is described in terms of the dynamic struc- 
ture factor of all the electrons in the plasma 

where 
is the total dynamic structure factor given by 

is the usual Thomson cross section and S ( k ,  w )  

As extensively discussed in Gregori et al. [l], the first 
term in Eq. (3) accounts for the density correlations of 
electrons that dynamically follow the ion motion. This 
includes both the core electrons, represented by the ion 
form factor f~(k), and the screening cloud of free (and 
valence) electrons that surround the ion, represented by 
q ( k )  [ll]. Sii(k,w) is the ion-ion density correlation func- 
tion. The second term in Eq. (3) gives the contribution 
in the scattering from the free electrons that do not fol- 
low the ion motion. Here, Sze (k, w )  is the high frequency 
part of the electron-electron correlation function [12] and 
it reduces to the usual electron feature [13,14] in the case 
of an optical probe. Inelastic scattering by core electrons 
is included in the last term of Eq. (3), which arises from 
bound-free transitions to the continuum of core electrons 
within an ion, S,,(k, w ) ,  modulated by the self-motion of 
the ions, represented by S,(lc,w). 

In Ref. [l], we have presented simplified expressions for 
each term in Eq. (3) for low-Z materials. In those cases, 
the bound-free contribution is small under most experi- 
mental conditions and it can be neglected. However, in 
the case of carbon, L-shell inelastic scattering needs to 
be included. Differently from the approach followed in 
Ref. [l], we propose a more comprehensive treatment of 
the core electron term based on the impulse approxima- 
tion (IA) [15, 161. The IA assumes that the electron- 
photon interaction occurs on a very short time-scale, so 

the target electron always sees the same nuclear potential 
just before and after the collision. Since only changes in 
the kinetic energy needs to be considered, the electron 
can be treaded as free and its final energy depends on 
the projection of the electron’s initial momentum on the 
scattering vector k. Thus, the doppler broadening of the 
scattered radiation is proportional to the initial momen- 
tum distribution of the electron 117. In the hydrogenic 
approximation for the initial wavefunction and momen- 
tum distribution of the electron, the IA profiles for K and 
L-shells assume the form [18] 

(4) 

1 
8,0(5) = xz, 64 [ 3(1+  4t2/Z33 

where, 

hk (7) 

with a B  the Bohr radius and 2, = ZA - Z,,J the effective 
nuclear charge seen by the electron in the quantum state 
n,l. The screening constants zn,z depend on the atomic 
(or ionic) state of the atom and they can be calculated 
from the prescription of Pauling and Sherman [19]. 

As discussed by Eisenberger and Platzman [15], the IA 
is correct to the order of (EB/Ec)2 ,  where EB is the bind- 
ing energy and E, is the Compton recoil. For our typical 
experimental conditions, E, - 70 eV and the binding 
energy of L-shell carbon electrons is EB - 11-64 eV (de- 
pending on the ionization state), thus errors introduced 
by the IA can be significant. Even if K-shell contribution 
is typically less important than the L-shell one, correc- 
tions to the IA need to be accounted for K-shell electrons 
as well. The main modification in the IA appears as a 
shift of the peak of feature from the free electron value, 
an effect known as the Compton defect (see e.g., [20,21]). 
Since the IA assumes plane waves as the final state for the 
electron, improvement in the model can be obtained by 
using the first Born approximation and hydrogenic wave- 
functions for both initial and final states [15, 22, 231, or 
by a perturbation expansion of the final states [24, 251. 
In our work we will follow the perturbative approach of 
Holm and Ribberfors [25] which gives for the first order 
asymmetric correction to the IA: 
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plasma constituents are calculated including the screen- 
ing of the bound states. For large densities, the clas- 
sical Debye-Huckel (Yukawa) potential is replaced by a 
screened potential which has a cut-off for distances that 
approach the thermal de Broglie wavelength, in order to 
mimic quantum mechanical effects (%.e., exchange and 
symmetry). This approach allows the calculation of de- 
localized electrons, i.e., the number of electrons that are 
no longer bound to a single ion. These electrons are free 
or weakly bound like the conduction electrons in a metal. 
For our conditions, these electrons give rise to the Comp- 
ton downshifted electron feature of the x-ray scattering 
spectrum. The PIP model is based on the self-consistent 
solution of Saha-like equations for each ionization stage 
together with the calculation of appropriate chemical po- 
tentials for electrons and ions. This also allows the inclu- 
sion of high density effects by using corrected chemical 
potentials for the continuum lowering. SCAALP is based 
on the density functional theory for plasmas, where elec- 
tronic structure and ionic distribution are determined 
self-consistently. The plasma is considered as an effec- 
tive classical system of virtual neutral particles (neutral 
pseudo-atom, NPA) interacting via an interatomic effec- 
tive potential Vefr (r ) .  Electrons of the NPA satisfy a 
Schrodinger equation with an effective central symmet- 
ric potential 4(r).  Both V&t and 4 are determined by 
the electronic structure and the ionic distribution of the 
plasma. Polarization and correlation effect of the contin- 
uum electrons are taken into account, as well as a part 
of the exchange interaction within V, f f .  

Results from these models, assuming different values 
for the carbon density, are plotted in Figure 5. The com- 
parison with the experimental data shows good agree- 
ment with SCAALP at all densities, even if some dif- 
ferences still remain especially for the high temperature 
case. The PIP model also gives reasonably good agree- 
ment with the data at all densities, but it seems to 
over-predict the ionization state in the mid-temperature 
regime. In this regime the plasma undergoes a tran- 
sition from a degenerate fluid to a classical one, thus 
a full quantum mechanical treatment beyond the Saha 
description may be required. ACTEX shows a similar 
trend to SCAALP for the low density simulation, but, in 
the higher density case, predicts a low temperature foam 
which still have -2 electrons in the conduction band. 

This transition to a metallic state for carbon at high 
density are not reproduced by the other models and our 
experimental data at low T, also shows an insulating be- 
havior for carbon at  high density. 

From this discussion, we see that currently available 
EOS models for carbon exhibit different behavior in the 
temperature range 0-50 eV, which span the range from 
fully degenerate to classical plasmas. X-ray scattering 
thus provides an accurate experimental tool for valida- 
tion and improvement of EOS codes, as clearly shown in 
Figure 5. 

IV. CONCLUSIONS 

In this paper we have given approximate expressions 
to calculate the x-ray scattering form factor from weakly 
bound electrons which are accurate for moderate to low-Z 
materials. The approach that we have followed is based 
on the IA corrected for the asymmetry induced by the 
electron binding. Together with the RPA for the free elec- 
tron dynamic structure, we were able to obtain a full de- 
scription of the x-ray scattering form factor for a carbon 
plasma. We have compared our model with experimen- 
tal data from the Omega laser facility in order to extract 
accurate values for electron temperature and ionization 
state. This has allowed the comparison between various 
ionization balance models for carbon with our data, thus 
enabling a direct validation of EOS theories for a carbon 
plasma in a regime which cover the transition between a 
degenerate to classical fluid. Our result are of interest for 
ICF research as well as planetary science since they in- 
dicate that matter under extreme conditions, as the one 
found in fuel pellet during compression or in the interior 
of planets, can now be investigated with good accuracy. 
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